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Abstract-The paper describes studies to quantify the numerical errors caused by ‘false diffusion’, and to 
compare the performance of alternative numerical schemes for describing elliptic convective flow and heat 
transfer, within supersonic jets mixing into supersonic or subsonic streams. Results obtained are presented 
and discussed. Eleven schemes were considered in this study, but converged solutions were obtained with 
only five of them. Results obtained with the successful schemes are presented and discussed. It is concluded 
that for the high-shearing, high-velocity flows considered, the ‘upwind’ differencing scheme is probably the 
best choice, despite its dissipative nature and that the numerical errors associated with its use are no more 

significant than those introduced by uncertainties in the turbulence models. 

1. INTRODUCTION For computational efficiency, calculations have 

TECHNIQUES for calculating the hydrodynamics and 
been performed for chemically inert flows. The under- 

heat transfer of supersonic jets exhausting into super- 
lying conclusions are not expected to be materially 

sonic or subsonic streams have been reported in ref. 
different in nature for chemically reacting conditions. 

[l]. The case of interest here is when the radius of a 
wall surrounding the jet nozzle is significantly larger 
than the nozzle exit radius. In these circumstances 
recirculating flow next to the thick wall necessitates 
the solution of elliptic differential equations. A solu- 
tion procedure for predicting such flows has been 
reported in ref. [ 11, where finite-volume equations are 
formulated using upwind differencing. A study of the 
predictions obtained by this procedure has suggested 
that the profiles of variables may be ‘smeared’ [2]. 
Although ‘smearing’ may be due to physical inter- 
actions, it may also be attributed to artificial diffusion 
introduced by the upwind differencing scheme. In the 
present work ‘false-diffusion’ introduced by the 
upwind scheme is quantified, in relation to the real 
physical diffusion. Furthermore, alternative schemes 
[3-171 that claim to introduce less ‘false diffusion’ 
have been implemented in a computer program, and 
used to obtain predictions that are compared among 
themselves. Predictions using different turbulence- 
model constants were also obtained in order to com- 
pare the magnitude of ‘false-diffusion’ error with the 
error introduced by the physical uncertainty in the 
turbulence modelling. 

2. THE PHYSICAL PROBLEM CONSIDERED 

The physical problem considered in this study is 
similar to that reported in ref. [l], and it is shown in 
Fig. 1. It concerns a hot supersonic jet exhausting into 
a cold subsonic freestream. 

The freestream and jet stream separate from the 
wall at A and B, respectively, transferring momentum 
to the fluid in the trapped region by turbulent mixing. 
To preserve continuity, the flow dividing lines AC and 
BC meet at C, a stagnation point. The trapped gases 
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7 0 Crown Copyright, 1987. FIG. 1. Flowfield around the nozzle exit. 
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NOMENCLATURE 

Ai influence coefficients (i = N, S, E, W) S, source term in transport equation 

ai cell face area s$, Sf linearized coefficients in the source 

C, convective contribution in false diffusion term 
approximation T temperature 

c, specific heat u component of velocity 

D, diffusion contribution in false diffusion V component of velocity. 
approximation 

FX, weighting function Greek symbols 
h enthalpy Be weighting factor 
k turbulent kinetic energy 6 distance between node P and i 
M freestream Mach number (= N,S,E,W) 

m, mass flow rate across cell face i & dissipation rate of turbulence energy 
M+ coefficient 6 transported variable 

P pressure P density of fluid 

Pm freestream pressure p viscosity 
P Peclet number l- diffusion exchange coefficient 

Pi grid Peclet number across cell face i e angle of flow into a cell. 

circulate as a pair of vortices and an increase in pres- 3. THE MATHEMATICAL MODEL 

sure at C preserves this circulating motion. The nature 
of the flow pattern in the region ABC will depend 
upon the magnitude of the nozzle and freestream vel- 
ocities. For the computations reported here the nozzle 
exit plane and freestream conditions used are listed in 
Table 1. The ratio of the wall diameter to the nozzle 
exit diameter is 4, and a recirculation region exists 
close to the wall. All variables across the nozzle and 
freestream inlet are set uniformly to those of the jet 
and ambient conditions, respectively. 

The jet and freestream inlet values of turbulence 
kinetic energy (k) and its dissipation rate (E) are 
defined for the present calculations as 

k l”lH = o.o05u,2,,,, 

and 

&inlet = C&,ljZJO.lr,,,r, 

where C,, = 0.09 and rnozzle is the nozzle radius. 

Table 1, Conditions at the inlet of the calculation domain 

Nozzle stream Freestream 
Variable 4 values values 

Axial velocity, m s- ’ 2000.0 200.0 
Radial velocity, m s- ’ 0.0 0.0 
Pressure, kPa 200.0 100.0 
Temperature, K 900.0 217.0 
Mach number 3.3 0.68 
Density, kg m _ 3 0.77 1.6 
Radius of nozzle exit, m 0.1 
Radius of wall, m 0.4 

Note : All variables are set uniformly across the nozzle exit 
plane and freestream inlet boundary. 

3.1. The diSferentia1 equations 
The partial differential equations describing the 

fluid dynamics and heat transfer of the flow problem 
described above are written in the following time- 
averaged, two-dimensional form, with axial and radial 
coordinates x and r, respectively [l] : 

1 8 rp &j 
- --(--) = s,. (3) 

r ar U+ ar 

This represents a transport equation for a general 
variable 4. The variables u and v are axial and radial 
velocity components, p is the density, p the effective 
viscosity and g9 the ratio of the rate of exchange of 4 
to the rate of exchange of momentum. The final term, 
S,, is the source term. The variables, 4, necessary in 
this study are: u, v, h, k and E, where h is the total 
enthalpy, expressed as 

h=C,T+$f+k (4) 

and C, is the specific heat. k and E stand for the kinetic 
energy of turbulence and its dissipation rate. 

Source-term expressions for the above 4’s are given 
in ref. [l]. Pressure is derived from the pressure cor- 
rection equation [ 181. 

Further relationships are required for : the density 

of the gas, from the ideal gas equation ; the pressure, 
derived by applying the continuity condition to all 
local fluid volumes; and the temperature, obtained 
from the enthalpy definition. 
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FIG. 2. The solution domain. 

3.2. The bo~d~ry conditions 
The boundary conditions relate to the solution 

domain of Fig. 2. This extends axially from an inlet 
plane coplanar with the jet exit, to an outlet plane 
downstream from the recirculation region. The radial 
extent is from the symmetry axis to an outer location 
beyond the wall radius and sufficient to enclose the 
expanding jet. 

With 4(x, r) referring to any variable at position 
(x, r), and 4, = Q, (0, r I=- rwall), the boundary con- 
ditions are as follows : 

(i) Symmetry axis, r = 0 ; v = 0, &j#r = 0. 
(ii) Outer boundary, r = r,,,,, ; Cp = (pm, except u; 

subsonic freestream, v = 0; supersonic freestream, 
tl = u, + [(P--_PJP~u](M’- l)“‘, where M is the 
freestream Mach number at the inlet plane [ 11. 

(iii) The outlet boundary, x = x,,~,~, ; &$/ax = 0, 
except for subsonic freestream pressure, p = pm_ 

(iv) The inlet boundary, n = 0 ; r > rWali, d, = #m ; 
r d rno~Ic, 4 = &et; rwatt > r > rnoule, u = 0; v, k and 
E are defined using logarithmic wall functions [ 181. 

4. METHOD OF SOLUTION 

4.1. F~~~te-do~~~~ eq~utjo~~ 
Equation (3) may be written in finite-volume form 

by multiplying by r and integrating over an elemental 
cell volume surrounding a defined point P [3, 181 

where the summation n is over the cells adjacent to P. 
The coefficients A$ account for convective and 
diffusive fluxes across an elemental cell. For example, 
when upwind differencing is used, the coefficient 
for the high-x neighbour is 

when u,<O 

and ) (6) 

g a, 
A? = PPGG + 6 g when u, > 0 

0 ” ?I 

where S, is the distance between nodes P and n, a,, is 
the area of the cell face, (F/B& is the arithmetic mean 
of the values at P and n, and pp is the upwind value 
of density (in this case that at grid node P). The source 
term is written in a linear form, S, = St + S$$+, 

This formulation of the above coefficients, and in 
particular of their convection part, constitutes the 
essence of this study. 

4.2. Problems msociated with the coe~cie~t~o~u~~t~o~ 
The discretization procedure briefly described in the 

previous section involves use of interpolation assump- 
tions for the variations of the fluid properties. In 
principle, interpolation assumptions will not affect 
final solutions, provided sufficiently fine grids are 
employed. They will affect solutions when coarse grids 
are used ; this is particularly the case for the inter- 
polation of convection terms. For multi-dim~nsionai, 
multi-phase flow phenomena, involving two and three 
space dimensions and two or more sets of equations, 
the power of even present day computer capacity and 
speed generally proves to be the limiting factor in 
the use of very fine grids, Therefore, inte~olation 
schemes for the convection terms, that are sufficiently 
accurate to permit the performance of complex cal- 
culations within presently available computing re- 
sources, are required. One of the main deficiencies 
of current interpolation assumptions relates to the so- 
called ‘false diffusion’, commonly attributed in the 
literature to the order of accuracy of the differencing 
scheme used. Whilst the order of the scheme may be 
a component of the problem it cannot be the only 
contributor. Because, for high Peclet number flows, 
even though the central difference scheme is second- 
order accurate it actually performs far less satis- 
factory than the upwind scheme which is only first- 
order accurate [3]. Indeed, the performance of the 
upwind scheme is also unsatisfactory, for it smears 
profiles at large Peclet numbers, a feature which is 
true of all other ‘higher arder’ schemes, in different 
degrees [23]. The view taken in this report is that 
asserted by Patankar [3f : false diffusion exists only in 
multi-dimensional phenomena and arises primarily 
because of the common practice of treating the flow 
across each control-cell face as locally one-dimen- 
sional. Therefore, schemes that would give less false 
diffusion should take account of the local multi- 
dimensional nature of the flow. Such schemes exist 
but they present convergence problems [IO, I I]. The 
true merit of the higher-order schemes is that they 
approximate better the fluid property-space variation 
which is in reality nonlinear; so they may he more 
accurate for relatively coarse grids. In this work eleven 
alternative schemes are tested with a view to eval- 
uating their relative accuracy, generality, numerical 
stability and computer requirements. 

The schemes tested are : 

(1) the central-difference scheme (CDS) ; 
(2) the upwind-difference scheme (UDS); 
(3) the ~yb~d-~fferen~ scheme (HDS) ; 
(4) the locally-exalt-difference scheme (LEDS); 
(5) the power-difference scheme (PDS) ; 
(6) the quadratic upstream-difference scheme [8] 

(QUW ; 
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(7) the extended quadratic upstream-d~~erence Wd _ node 

scheme 19) (QUDSE) ; \ 

Grid-tine 

\ 

(8) the extended/revised quadratic upstream- 
difference scheme [9] (QUDSER) ; 

(9) the skew scheme [lo, 1 I] (SKEW) ; I 

(10) the residual-difference scheme [ 161 (RDS) ; and - 1 

finally 
f 11) the upwind-in-streamline-direction [ 17] scheme 

(UPSTREAM). 
i 

These schemes are described in detail in the next 
section -- x 

4.3. Coe#cient formulation accordhg to the various 

schemes 

NUtRbW 1 2 3 4 5 

COt7tWJl Q, and U V V U 
YOlWme conlmuity 
tym 

boundary boundary 

4.3-l. The d$iision term, Integration of the differ- 
ential equation diffusion terms (3) over a typical con- 
trol volume, P (Fig. 3) yields 

Approximations for the quantities in brackets are 
sought and the standard practice is to use central 
differencing. The right-hand side of equation (7) then 
becomes 

where 6, is the distance between nodes P and i. This 
approximation is third order [8]. 

4.3.2. The conuection term Integration of the con- 
vection terms of equation (3) over a typical control 
volume P (Fig. 3) yields 

The various tfr-value approximations used at the con- 
trol-vofume faces are given below. 

(1) Cen tray-d~~rence scheme where the diffusion terms D, are 
The central-difference scheme assumes a linear pro- 

file to evaluate the convected face values as follows : 

the convection terms C, are 

C, = piuiai 

and 
Then, for the central-difference scheme one can 
express the inffuence coefficients of equation (5) (e.g. 
A,, containing contributions of both convection and 

CONTROLMLUME SPECiFICATION 

CONTROL VOLUME FOR SCALAR VARIABLE 

Frc. 3. Control volume and notation. 

delusion) as follows : 

-I-[-C_Ol] 

[A, Blj z max (A and B). 
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This is a convenient way of presenting the various scheme are 
schemes and will be used for them all. 

A, = 10, D,, -G/2, - c,g 

(2) Upwind-deference scheme 
The upwind-difference scheme, first suggested by 

Courant et al. [5] assumes the upwind &value to be 
convected through the faces, instead of the average of 
two neighbouring values of the convected property. 
This leads to the following approximation for the 
convected d-values at the faces : 

(14) 

The influence coefficients for the upwind-difference 
scheme are 

Aw = [lo, D,, CwP, C,J 

A, = [O, D,, -CA -C,] 

A, = [O, D,, CJ4 Cs]. (17) 

(4) Locally-exact-difSerence scheme 
The locally-exact-difference scheme, traced back to 

the paper by Allen and Southwell [4] and later redis- 
covered by Spalding [6] and others, makes use of 
the one-dimensional analytical solution for the con- 
vection-diffusion equation (without sources) to ap- 
proximate the convected values across the faces. 

Since the analytical solution for the one-dimen- 
sional convectiondiffusion equation is an expo- 
nential function, the face values according to this 
scheme are approximated as follows : 

4 

” 

+ +ev(PJ-1 
p exp(p)_l (&N-d+) 

A=&+ (18) 

As = [Ds, D, + Cs] 

using the previously defined notation. 

(3) Hybrid-deference scheme 

(15) where P is the Peclet number and P,, P,, etc. are the 
mesh Peclet numbers (e.g. P, = C,/D” = p.uJo+/p)). 

The influence coefficients for the locally-exact- 
difference scheme are 

The hybrid-difference scheme, introduced by Spald- 
ing [6] combines the advantages of both the central- 
difference scheme and the upwind-difference scheme. 
It leads to the following expressions for the convected 
face values : 

AE = expg)-1 +fece70J 

A,= 
expk,)-1 +lcw’on 

4e = 4P ti, > 20, 

= f(&+&) tit, < 20, 

dlV=dw ni, > 20, 

= :(& + 4w> tii?, G 2D, 

4% = 4P +I,, > 20, 

= :(& + 4~) % G 20, 

4% = 4% riz, > 20, 

= i(&+&) ti, < 20, (16) 

where ti’s are the absolute values of the mass-flow 
rates through each face denoted by the lower-case 
subscripts. 

The influence coefficients for the hybrid-difference 

AN = expg)--1 +u-cn30n 
A, = exp&l +w4 (19) 

(5) Power-d@erence scheme 
The power-difference scheme, an extension of the 

locally-exact-difference scheme, makes use of a fifth- 
order power law to approximate the exponential func- 
tions of the locally-exact-difference scheme [3]. The 
convected value at the faces is approximated as 
follows : 

Cl+ BeMupstream - Be4downstrcam (20) 

where 

Be = (1 -IPJlWIIP,I. (21) 

The influence coefficients for the power-difference 
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scheme are : 

The quadratic upstream-di~erence scheme, pro- 
posed by Leonard [&] is claimed to combine the accu- 
racy of quadratic inte~olation with the stability of 
upstream weighting. This scheme can be interpreted 
as a pure upwind scheme which is, however, aug- 
mented by gradient/curvature-ty~ correction terms. 
This allows, the &-value, for example, to respond to 
the transport processes which occur only in directions 
normal to that considered. In other words, it allows 
the coupling of the component flows through one- 
dimensional approximations which, however, include 
comer nodes when the curvature-type corrections are 
made. According to this scheme, the +-values being 
convected through the control-voiume faces are 
expressed, as follows : 

M,* = (Cj Ifr l~,i)/{2C~), j = 6 w, n, .s 

and S,wDS, SYDS are the conventional UDS sources. 

(7) Quadratic upstream-difference scheme extended 
The quadratic upstream-difference scheme ex- 

tended, reported by Pollard and Siu [9], is an exten- 
sion of the quadratic upstr~m-d~~ere~~ scheme, in 
that the influence coefI%ients are r~-fo~ula~ed io 

ensure positive ~oe~~ients. For exam@, when the 
flow is from left to right and bottom to top, then the 
quadratic upstream coefficients, neglecting diffusion 
are 

A;, = {@J AE, = {&} 

A$, = -($C,+jCJ A& = {QC,c$C,) 

A ww = (&J As, = {&)_ ~~~~ 

which are replaced in the quadratic upstream differ- 
ence scheme extended by 

A;, = {$C,) A;, = (dC,) 

Al, = (3,C,+;c,j A; = @C,+$CJ 

Am<=0 Ass = 0 

K = - KlJ&w4 + Cs#ksl- Rob, + C?&v> 

s, = -t[c,+c,]-t(c,+c”) (26) 

where primes f’) denote without diffusion, 

The ~xtended/r~vis~d version of the quadratic 
ups~ream~iffereuce scheme requires a further modi- 
fication of the source term, namely, its linearization. 

The SKEW-di~eren~ scheme is a form of flow- 
oriented differencing and was reported by Raithby 
[lo, 111. It aims to reduce or even eliminate ‘false 
diffusion’, an inherent problem of locally one-dimen- 
sional schemes. The earliest reported flow-oriented 
scheme is believed to be the one reported by Le Feuvre 
8121 and i~d~pe~dentIy by Zuber [I3]. However, these 
were non-Conservative, and their use was rather 
limited. 

The Raithby skew scheme uses four distinct inter- 
polatian regions (to account for all possibilities of 
flow direction) to evaluate the convected $-value at the 
east face of the control volume. These are represented 
in Fig. 3. The approximation for 9, for the particular 
inclination of Fig. 3 is 

(P&AYc;b, = (%CP - &)2& f 2&P, 07) 

where 

Simiiar expressions can be obtained for all other possi- 
bilities. The weighting factor used, for example 

has to be restricted ta be less than unity to avoid 
extrapoiations, i.e. in Raithby’s skew scheme it is 
restricted between zero and one. However, inter- 
polation is used for weighting functions greater than 
unity [12]. For _F, equal to zero, there is no cross- 
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stream velocity component and the skew scheme re- 
duced to the conventional upwind-difference scheme. 

In essence, the skew scheme, accounts for grid-to- 
flow skewness (i.e. the main cause of false diffusion), 
but at the expense of stability and conservation. 

The influence coefficients for the skew-difference 
scheme are 

AE = D,-(C/2-K)(l-X,) 

Aw = D,+(CJ2--KJ(1 +U 

A, = D,-(C,,/2-K,)(l-S,) 

As = D,+(C,/2-K,)(l+&J (30) 

where the S’s take the sign of the subscripted velocity 
components and the SE, SW, NE, NW contributions 
are included in the source term after linearization. For 
a full formulation see Pate1 [ 151. 

(10) Residual-diSference scheme 
The residual-difference scheme [14] is obtained by 

considering the residual for each coordinate direction. 
The complete equation yields approximations which 
depend on the mesh Peclet numbers and exponential 
functions. For illustration purposes, consider the one- 
dimensional equation (with sources) evaluated with 
guessed values of the 4 variable. This leads to 

pu!!? _I-!?? -S = Res 

dx dx2 + (31) 

whereby substitution of the form 

4 = A,+A,x+A2exp(pux/T) (32) 

leads to 

&+$w)- ~QEWE+~W-~&) 

-S, = Res (33) 

where 

Px = FAX, Q[Px] = 1 +Px*/16, for ]Px] < 4 

IW =-- 
2 ’ 

for JPxl > 4 (34) 

and the finite-difference scheme is obtained by setting 
Res, the residual, to zero. 

The influence coefficients for the residual-difference 
scheme are 

AE = D,Q[Pej-mod 

A, = D,Q[P,]-mod 

where Q [P] is given by equation (34). 

(11) UPSTREAM scheme (modified) 
The coefficients of the finite-domain equations are 

formulated as follows, where attention is focused, e.g. 
at the SW corner of the control cell : 

C8P, = C&v 

C/A = GA4s - C&SW 
8,> 45 (36) 

CJ$W = CJ$w 

1 e2 = 45 

where 

A=max 

and 

4.4. Overview and discussion of influence coefficients 
The main points that arise from a close inspection 

of the influence coefficients, equations (1 lt(36) are 
given below. 

(1) The central-difference scheme influence co- 
efficients become negative for Ci > 20, thus leading 
to oscillatory and non-convergent solutions. The 
cause of the negative coefficients is the use of down- 
stream values in the flux approximations at high Peclet 
numbers. 

(2) The upwind-difference scheme influence co- 
efficients are unconditionally positive. This leads to 
physically reasonable solutions at all Peclet numbers. 
Its accuracy is, however, limited by its first-order dis- 
cretization error. For flows aligned with the grids, and 
fairly fine grids, the scheme is accurate enough at high 
Peclet numbers. To reduce the discretization errors, 
the need arises to use finer grids which may prove 
expensive for practical applications. 

(3) The hybrid-difference scheme influence co- 
efficients are positive since they are just a com- 
bination of the central/upwind scheme. This practice 
ensures stability and improves accuracy of pure 
upwinding. 

(4) The locally-exact-difference scheme influence 
coefficients are always positive and thus convergence 
and boundedness are assured. For one-dimensional 
steady-state flow, the scheme produces accurate solu- 
tions for any Peclet number, even for a fairly coarse 
grid. 

(5) The power-difference scheme influence co- 
efficients are just variations of the locally-exact- 
difference scheme, and the same comments apply. 

(6) The quadratic upstream-difference scheme 
influence coefficients may suffer from instabilities, that 
is, the coefficients can become negative when con- 
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vection effects are large. Furthermore, negative 
coefficients appear when (A, - S,) < 0. A simple way 
to overcome this is to switch over to the upwind- 
difference scheme at a certain Peclet number. 
However, this treatment destroys generality, which 
for practical implementation, is a strong desideratum. 

(7) The extended version of the quadratic up- 
stream-difference scheme possesses positive influence 
coefficients, regardless of the magnitude of the con- 
vection term, but the source terms may still induce 
negative coefficients. 

(8) The revised version of the quadratic upstream- 
difference scheme--extended ensures always positive 
coefficients, by introducing a linear source which 
depends on the previous iteration field values. 

(9) The skew-difference scheme influence co- 
efficients can be a mixture of both positive and 
negative terms. The grid point coefficients (i.e. A,, 
A,,,, A,, As) can become negative because they include 
elements of outflows. However, the remaining co- 
efficients (i.e. A,,, A,,, A,,, A& are positive and 
have some favourable stabilizing consequences. 

(10) The residual-difference scheme, achieved by 
the inclusion of exponential functions, has similar 
coefficients to those of the central-difference scheme, 
except that the diffusion terms are appropriately 
modified. 

(11) The novel UPSTREAM scheme presented 

here, and its variants [l 11, is a flow-oriented scheme 
with a difference in that it overcomes the problems of 
nonconvergence by formulating the influence co- 
efficients so as to ensure positive values only. Here 
also false diffusion is considerably reduced or virtually 
eliminated [ 171. 

It should be mentioned that a disadvantage of all 
‘skew schemes’ is that ‘conservation’ of energy, 
species, etc. cannot be guaranteed. This is a serious 
defect, and a future development should be an 
additional ‘correction’ stage in the solution procedure, 
to reinstate conservation in case of its violation. 

(12) In general, the boundary conditions for the 
test problem are incorporated by modifying the B- 
coefficients in the finite-domain equations. For the 
QUDS/E/R schemes, a problem occurred with the 
extra upstream values that are required. This was 
dispensed with by setting the upstream value either to 
the boundary value or the first internal grid-point 
value. It was found in other work, for two-dimen- 
sional laminar flow problems [23], that both treat- 
ments lead to similar results. For the other schemes 
no special treatment was required. 

4.5. The magnitude of YaIse diSfusion’ 
The following are the most widely used approxi- 

mate expressions for the magnitude of the ‘false- 
diffusion’ coefficient, as applied to two-dimensional 
problems that are simulated using the upwind scheme : 

Wolfhtein (1968) [19] 

l- * 0.36p]V]A sin 20 ; f&C = (37) 

De Vahl Davis and Mallinson (1976) [20] 

r 
1 

“lse Z 4(sin’ B+cos3 0) 
p]V]A sin28; (38) 

Leschziner (1980) [2 l] 

(39) 

where 0 is the flow angle and A the (uniform) mesh 
size. 

All of the above expressions yield Ffalse = 0 at 8 = 0, 
n/2 and a maximum value of 0.36p]V]A at 6 = x/4. 
This implies that at an angle of 6 = 45”, the upwind- 
difference scheme introduces a ‘diffusion’ coefficient 
equivalent to ]Pe] N 2.8, regardless of the magnitude 
of the real Peclet number. 

The De Vahl Davis and Mallinson [20] approxi- 
mation, equation (38) was used in this work to quan- 
tify the ‘false diffusion’. 

5. COMPUTATIONAL DETAILS 

All the above schemes were implemented in a gen- 
eral purpose two-dimensional code which uses the 
SIMPLE algorithm of Patankar and Spalding within 
a finite-difference, control-volume formulation, de- 
scribed in detail in ref. [l]. The SIMPLE procedure 
leads to an iterative scheme which involves the 
repeated solution of sets of linear equations by a 
TDMA algorithm. The computer code itself is a 
variant of 2/E/FIX originally developed by Pun and 
Spalding [22]. 

The computational grid spanned 0.35 m radially 
with 11 grid positions and 0.47 m axially with 10 grid 
positions. The distribution of the grid lines was as 
follows : 

x: 0.0, 0.03, 0.06, 0.10, 0.16, 0.22, 0.28, 0.34, 0.40, 
0.47 

y: 0.0, 0.015, 0.025, 0.045, 0.075, 0.105, 0.135, 0.175, 
0.225, 0.275, 0.350. 

The solution domain was chosen to enclose the jet 
expansion. In the calculations considered here, 100 
iteration cycles were sufficient to converge results to 
0.1% in pressure. The computer time for such a cal- 
culation was 180 s on a PRIME 750, for the UDS 
and 200 s on the same machine for the UPSTREAM 
scheme. 

6. RESULTS AND DISCUSSION 

The results obtained are presented in Figs. 4-23. 

6.1. The general Jlowfield 
Figures 4-23 present typical results from the stan- 

dard calculation (e.g. with conditions as described in 
Section 2), obtained using the UDS and the standard 
turbulence model constants. The results are presented 
in the form of velocity vectors and contour plots. 
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> 2049 m/s 

Y 

L X 

FIG. 4. Velocity vector plot (UDS). 

Figure 4 presents the velocity vectors and Fig. 5, 
contour plots of the axial velocity component. There 
is clearly a recirculation region next to the wall with 
a minimum value of u = -53.0 m s-l, extending to 
about 0.08 m downstream from the nozzle exit plane. 

Figure 6 describes the temperature distribution in 
the form of isothermal contours for values between 
216 and 1060 K in ten equal intervals. The tem- 
peratures near the wall are higher than those in the 
nozzle stream. This is a hydrodynamical feature of the 
flow discussed in detail in ref. [l]. Figure 7 presents 
contours of density in 15 equal intervals between 0.3 1 
and 1.57 kg rnm3. 

Pressure contours are displayed in Fig. 8. The pres- 
sures at the nozzle exit, the freestream and just down- 
stream of the nozzle wall are 200, 100 and 81 kPa, 
respectively. The pressure is higher in the nozzle exit 
stream than in the freestream and the expansion of 
the nozzle flow is enhanced by the reduced pressure 
in the base region. As the nozzle flow expands down- 
stream the pressure on the jet axis decreases to a 
minimum, 87 kPa, at a distance of 0.16 m from the 
nozzle-exit plane, and then increases again, as the 
expanding flow is reflected back to the plane axis, to 

a maximum of 115 kPa at a distance of 0.37 m. The 
pressure radial profile just downstream of the wall 
shows a small lowering of the pressure behind the 
nozzle wall, the gradient of which drives the recir- 
culating flow; the differences between the ambient 
pressure and this reduced pressure may cause a sig- 
nificant drag force. 

Figure 9 presents contours of kinetic energy of tur- 
bulence. The predicted minimum value is about 
1.7 x lo-“ kg m-’ SC’ and the maximum about 1.0 
kg m- ’ s- ’ (i.e. between 10 and 6000 times the laminar 
value). The wall has a large effect on turbulence kinetic 
energy in the subsonic region, and the turbulence 
energy is substantial in the mixing layer and falls away 
rapidly on moving into the freestream. Figure 10 pre- 
sents contours of effective viscosity. 

6.2. Predictions obtained by the various discretization 
schemes 

Figures 8-23 are devoted to comparing results 
obtained by using the various discretization schemes, 
described earlier. The presented comparisons are 
selected to display the greatest prediction differences 
among the schemes and refer to two downstream 
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NO. VALUE (m/s) 
2 225.98 9 1202.76 
3 365,52 10 1342.30 
4 505.06 11 1481.84 
5 644.60 12 1621.38 
6 784.14 13 1760.92 
7 923.68 14 1900.46 
8 1063.22 15 2040.00 

FIG. 5. Axial velocity contour plot (UDS). 

NO. \talue (K) 

2 384.8 
3 469.2 
4 553.6 
5 638.0 
6 722.4 
7 806.8 
8 891.1 

FIG. 6. Temperature contour plot (WDS). 
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NO. VALUE (Kg/m**3) 
2 0.47 9 1.06 

10 1.15 

II 1.23 

12 1.32 
13 1.40 

14 1.48 

FIG. 7. Density contour plot (UDS). 

Y 

t X 

NO. Value 
(kN/m** 

120.60 
130.58 
140.50 
150.42 

- 9 160.33 

FIG. 8. Pressure contour plot (UDS). 
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NO. VALUE (J*I.E2) 
2 242 
3 363 
4 454 
5 605 
6 726 
7 847 
8 968 
9 1089 

10 1210 

FIG. 9. Kinetic energy of turbulence contour plot (UDS). 

No. Value (Kg/ms) 

FIG. IO. Effective viscosity contour plot (UDS). 
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0.00 t, 
I I I I 
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FIG. Il. Axial velocity profiles at IX = 2 station. 

0.30 
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0.25 0 d tiDS 

0.20 
DISTRNCE 

(m) 0. IS 

0.10 

D D LEDS 

0 9 PDS 

+ + UPSTRERtl 

500 1000 1600 

FIG. 12. Axial velocity profiles at IX = 8 station. 
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II 

0.20 - 
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II 
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m q 0 LEDS 

0 0 0 PDS 
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- 

0.00 t , I 1 1 I I t 
0. fE+oo s.OE+os l.OE+06 l-SE+06 2.OE+06 2. SE+06 3.OE+06 

(J/Q) 

FIG. 13. Enthalpy profiles at IX = 2 station. 
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stations, identified by IX = 2 (at a distance of 0.03 m 
from the nozzle wail) and IX = 8 (at a distance of 
0.34 m from the nozzle wall). 

From the eleven schemes used only five led to con- 
verged solutions. They are the UDS, E-IDS, LEDS, 
PDS and the UPSTREAM schemes. The rest failed 
to converge for this test case despite the authors’ con- 
siderable efforts with various combinations of relax- 
ation parameters and procedures. It has been ob- 
served elsewhere 1231, that as the grid Peclet number 
rises so several of the ‘higher order’ schemes become 
increasingly unstable and eventually fail. As such, it 
is not so surprising that the higher order schemes 
failed to converge on the present problem, since the 
grid Peclet number is high at various locations within 
the integration domain. Figures 11 and 12 present 
axial velocity profiles at IX = 2 and 8, respectively. 

Comparison of predictions for the axial velocity, u, 
reveals that all five schemes lead to virtually identical 
predictions throughout the field. The maximum dis- 
crepancies occur at IX = 8, again very near the axis, 
where the UDS predicts slightly lower velocity values 
than the rest. 

Figures 13 and 14 present enthalpy profiles at 
IX = 2 and 8, respectively, as predicted by the five 
schemes that led to converged solutions. At IX = 2 
the predictions with all schemes are virtually the same 
except in the recirculation region where all other 
schemes predict a marginally sharper profile than the 
UDS. At IX = 8 the maximum discrepancies occur 
near the axis. There, the UDS underpredicts the 
enthalpy value compared with the other schemes, and 
particularly with respect to the UPSTREAM pre- 
diction (a difference of around 10%). 

6.3 1 Turbulence model uncertainties 
To allow for some quantification of the dis- 

crepancies found among the various scheme predic- 
tions, compared with the uncertainties in modelling, 
e.g. turbulence, a change was effected in one of the 

turbulence-model constants. Thus, Cp was changed 
from 0.09 to 0.07 and the runs were repeated. A sum- 
mary of the results obtained is presented in Figs. 14- 
22. 

Figures 15-l 8 correspond to Figs. I l-14 and show 
the predictions for axial velocity and enthalpy at 
IX = 2 and 8 with the modified constants. Figure 
18 displays the predictions for the enthalpy radial 
distribution at IX = 8, as obtained by the five schemes 
that led to converged solutions, with the modified 
turbulence-model constant. Comparing these results 
with Fig. 14 (case with the original constant) we 
observe that the maximum discrepancy between the 
UPSTREAM and the rest of the schemes is now some- 
what more pronounced at radial distances of 0.05 
0.10 m. Figures 19-22 present the profiles for modi- 
fied/unmodified constants with one other scheme, i.e. 
LEDS or UPSTREAM. For a more direct com- 
parison Figs. 20 and 22 present the IX = 8 velocity 
and enthalpy profiles predicted by the UDS for 
C, = 0.09 and 0.07 and also the profiles predicted by 
the scheme that led to the largest discrepancy, namely 
UPSTREAM, when used with C, = 0.09. It is seen 
that at IX = 8 the discrepancies due to the different 
C, values are significantly larger than those due to 
the scheme used. At IX = 2, Figs. 19 and 21, the 
di~repancies due to the turbulent-model constant 
are of the same magnitude as the discrepancies due to 
the schemes, for both the velocity and the enthalpy. 
False-diffusion errors are then not significant in the 
high-shear, high-velocity cases considered here, at 
least when compared to the uncertainties introduced 
by the turbulence models. 

6.4. False-d$fusichn levels 
Equation (38) above, was used to quantify the mag- 

nitude of ‘false diffusion’. A map of false-diffusion 
values, in the form of a contour plot is given in Fig, 
23. The contours present values of the ratio of the 
‘false-diffusion’ coefficient over the laminar viscosity. 

0.30 (ORIGIONAL CONSTANTS) - 

1 
UDS 

0.25 - 
a 0 0 HDS 

II 0 0 4 LEDS 

0.20 - Q Q 0 PDS 
DISTRNCE , + + + UPSTREAM 

(m) 0.15 - 

O.OE+OO 5.OE+os 1*DE+06 1.X+06 Z.OE+06 2.SE+O6 3.OE+06 

iJ/Kg) 

FIG. 14. Enthalpy profiles at IX = 8 station. 
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0.30 
(MODIFIED CONSTANTS) 

DISTRNCE 
l(m) 

0.15 

0 0 

0 0 

0 0 

+ + 

LIDS 

HDS 

LEDS 

PDS 

UPSTREiVl 

0 500 1000 1500 2000h/sJ 

FIG. 15. Axial velocity profiles at IX = 2 station. 
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0.30 

0.25 

0.20 
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0.10 

0 D HDS 

I3 D LEDS 

0 D PDS 

+ c UPSTREfwl 

0.05 

0.00 

0 500 1000 1500 2000 
(m/s) 

FOG, 16. Axial velocity profiles at IX = 8 station. 

0.30 
(MODIFIED CONSTANTS) 

0.25 

0.20 
DISTRNCE 

W 
0.15 

0.10 

0 0 tins 

0 0 LEDS 

0 0 PDS 

+ + UPSTREi=vl 

0.05 

0.00 
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FIG. 17. Enthalpy profiles at IX = 2 station. 
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0.30 

. 

0.25 - 

II 

0.20 - 

DISTRNCE , 

(m) 0.15 - 
I 

~M~DI~~ED CONSTANTS) 

UDS 

00 0 HDS 

00 0 LEDS 

00 0 PDS 

+ + + UPSTREAM 

0.20 

DISTRNCE 
(m) 

0.15 

O.OE+OO 5.OE+05 l.OE+06 1.SE+D6 2.OE+O6 2.5E+06 3_OE+06 

(J/Kg) 

FIG. 18. Enthalpy profiles at IX = 8 station. 

- UDS (ORIGIONAL WHSTANTS) 
m z1 LEDS (ORIGIONZiL cZONSTANTS) 
0 0 UDS (XODIFfED CONSTANTS) 

0 so0 1000 1500 2000(m/s) 

FIG. 19. Axial velocity profiles at IX = 2 station. 

- UDS (DR~GI~~A~ CONSTANTS) 

* = 9 upstream (~~~GI~NAL CONSTANTS) 

DISTRNCE o o o UDS ~M~DIFl~~ CONSTANTS) 

0 so0 1000 15DO (m/s) 2ooo 

FIG. 20. Axial velocity profiles at IX = 8 station. 
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-UDS (ORIGIDNAL CONSTANTS) 
Q 0 UPSTREAM (ORIGIONAL CONSTA?4TS) 
00 UDS (MODIFIED CONSTANTS) 

0.20 
D ISTRNCE 

(ml 
0.15 

O.OE+OO s.OE+OS i.OE-+06 l*sE+o& 2.UE+06 2.5E+06 3.OE+06 
(J/kg 

FIG. 21. Enthalpy pro&s at IX = 2 station. 

0.30 

0.25 

0.20 

DtSTANCE 
(d 

0.15 

II UDS (ORIGIONAL CONSTANTS) 
n n 9 UPSTREAM (ORIGIONAL CONSTANTS) 

II 
a00 UDS (MODIFIED CONSTANTS) 

O.OE+OO s*OE+os l.OE+06 l.sE+06 2.OE+o6 2.5E+O6 3.0E+06 
(J/Q) 

FIG. 22. Enthalpy proties at IX = 8 station. 

It is seen that the magnitude of false division, as 
predicted by equation (38), is at most 15 times greater 
than the laminar viscosity. The turbulence viscosity is 
between 10 and 6000 times the laminar value, so, at 
worst, the false diffusion is 1.5 times the real diffusion, 
that proves insignificant as far as predictions in these 
highly convective flows are concerned. 

7. CONCLUSIONS 

A comparative study has been performed on the 
behaviour of eleven numerical schemes for convec- 
tion, as applied to simuiations of supersonic-jet flow 
and heat-transfer problems. 

unstable nature of those schemes in applications 
to general practical cases. The UPSTREAM skew 
scheme led successfully to converged solutions, requir- 
ing about 10% more CPU time than the UDS, to 
obtain the same degree of convergence. The schemes 
that converged (e.g. UDS, HDS, LEDS, PDS and 
UPSTREAM), led to velocity and temperature results 
that were only marginally different. The maximum 
differences occurred near the jet axis at a distance of 
0.34 m from the base wall, and were consistently less 
than 10% (the maximum being the difference in 
enthalpy predictions between the UPSTREAM and 
the upwind schemes). Indeed, the observed differences 
were consistently less than the differences introduced 
by changing one of the turbulence-model constants. 

The higher-order schemes based on quadratic It is concluded that for the high-shear, high-velocity 
upstream differencing, and Raithby’s skew scheme problems encountered here, even in the presence of 
unfortunately failed to converge for the problems con- recirculation, the UDS scheme is probably the best 
sidered in this study, despite the authors’ best efforts, choice, differing only marginally in accuracy from the 
that included heavy relaxation and Peclet-number- schemes that departed most, namely the LEDS and 
based switches, This behaviour is consistent with the the UPSTREAM. It is stable, simple to understand 
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FIG. 23. False-diffusion/real-diffusion contour plot (UDS). 

and implement. It is also pointed out that in general 
applications care must be taken to sort out dis- 
crepancies that arise separately from mathematical 
modelling, such as turbulence modelling, and from 
numerical schemes. Therefore, for flows of practical 
interest, turbulence-modelling research should be 
coupled with research directed towards developing 
more accurate numerical prediction schemes. 

Finally, while numerical and physical-reasoning 
analyses increase confidence in prediction techniques, 
nothing surpasses good, high resolution measured 
data which is, regrettably, currently not available for 
the flows studied here. 
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EVALUATION DE ONZE SCHEMAS DE DISCRETISATION POUR PREDIRE 
UN ECOULEMENT ELLIPTIQUE ET LE TRANSFERT THERMIQUE 

DANS DES JETS SUPERSONIQUES 

R&uun&-On d&it des etudes pour &valuer les erreurs numeriques causees par une “fausse diffusion” et 
pour comparer les performances de schemas numeriques decrivant la convection thermique elliptique dans 
des jets supersoniques ou subsoniques. Onze schemas sont consider&s, mais des solutions convergentes ne 
sont obtenues qu’avec seulement cinq d’entre eux. Les risultats obtenus sont present& et disc&s. On 
conclut que pour les forts cisaillements et les Bcoulements a grande vitesse, le meilleur choix est probablement 
“upwind”, malgri sa nature dissipative et les erreurs numeriques assocites a son utilisation ne sont pas 

plus significatives que celles introduites par les incertitudes des modtles de turbulence . 

UNTERSUCHUNG VON 11 DISKRETISIERUNGSVERFAHREN ZUR 
BESCHREIBUNG DER ELLIPITISCHEN STROMUNG UND DES WARMETRANSPORTS 

IN UBERSCHALL-STRAHLEN 

Zusammenfassung-Der Bericht beschreibt Studien, in denen die numerischen Fehler bestimmt wurden, 
welche durch “falsche Diffusion” verursacht werden. Ein Vergleich der Leistungsfahigkeit von altemativen 
numerischen Verfahren wurde durchgeftihrt ; die Verfahren beschreiben die elliptische Konvek- 
tionsstriimung und den Warmetransport beim Eintauchen eines Uberschall-Strahls in eine Uber- oder 
Unterschall-Stromung. Die Ergebnisse werden dargestellt und diskutiert. Elf Verfahren wurden in dieser 
Studie betrachtet-nur bei fiinf von ihnen wurde eine Konvergenz der Liisungen beobachtet. Die Ergebnisse 
der funktionstfichtigen Verfahren werden dargestellt und diskutiert. Man folgert, da8 fur die betrachteten 
stark scherbeanspruchten Hochgeschwindigkeitsstriimungen das “upwind’‘-Differenzenverfahren die beste 
Wahl darstellt, trotz seiner dissipativen Natur und der Tatsache, da8 die numerischen Fehler nicht 

gravierender sind als jene, die durch Unsicherheiten im Turbulenz-Model1 zustande kommen. 

OIIPEAEJIEHME OAHHHAHHATH CXEM AHCKPETR3AHMH AJIR PACgETA 
3JIJIkHITH~ECK08 MOAEJIM TE9EHMII II TEIIJIOO6MEHA CBEPX3BYKOBbIX CTPYti 

AtniOTa~Si--OIIpeneneHbt KOnU'IeCTBeHHbIe OUeHKH WCneHHbIX OLIUi60K,BbI3BaHHbIX WIO~HOii nH++y- 

saefi));CpaBHeHb, ~#~KTBBHOCTW anbTepHaTHB"bIX YllCneHHbIX cxeM nJIn omicaii~s Monenw 3nn~n~~- 

WCKOrO KOHBeKTBBHOrO ITepeHOCa HMIIynbCa A Ter"Ia IIpH CMemeHWH CBepX3ByKOBbIX CTpyii B CBepX- W 

LIO3ByKOBbIX Te'IeHBIlX 06CyXCAalOTCK W aHUIH3HpyIOTCK pe3yJIbTaTbl 3THX WCnenOBaHElii. PaCCMaTpW 

BaEOTCII TBK)ICe OABHHaAUaTb CXeM,HO pemeH&Ul C XOpOmefi CXOnHMOCTbK, rIOny'#eHbI TOnbKO LUIR III(TB 

~3 H~~X.II~HBOLIZ~TCI H 06cyxcnamTcn pesynbTaTu,nonyreHHbIec noMombm Haw6onee ynaqsblx cxeM. 

CnenaH Bb,BO&'ITO mr BbICOKOCKOpOCTHbIX Te'4eHHii C 60nbmllM llOIIepe+IHbIM rpaJU,eHTOM CKOpOCTEi 

uan6onee yna',Ha pa3HOCTHaN CXeMa WI~OTWBOTOKaD,HeCMOTpII Ha nWCH,,aT~BHbIi$ XapaKTep,a TaKme 

4To wcneHHble OUIA~KU,CB~~~HH~~~ c ee npmdeHemieM,He 6onee cyu.xecrseHHbr, seix4 OIII~~KH, BB~AU- 
MbleIlO~~mHOCTKMHTyp6yneHTHbIX MOAeJlC%. 


